Modeling Barth Syndrome using Patient-Specific, iPSC-derived Cardiomyocytes

William T. Pu

Department of Cardiology, Children's Hospital Boston

Harvard Stem Cell Institute

June 2012
BSF Foundation Meeting

Barth Syndrome -- a reversible cardiomyopathy?

- known single gene defect involving a metabolic pathway
- waxing and waning disease course rather than irreversibly progressive disease
- progress slowed until recently by lack of mammalian model systems

Induced Pluripotent Stem Cells

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi1 and Shinya Yamanaka1,2,4

DOI 10.1016/j.cell.2006.07.024

Reprogramming Factors

Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors

Kazutoshi Takahashi, 1 Koji Tanabe, 1 Mari Ohnuki, 1 Megumi Narita, 1,2 Tomoko Ichisaka, 1,2 Kiichiro Tomoda, 3 and Shinya Yamanaka 1,2,5,4,4

DOI 10.1016/j.cell.2007.11.019

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 608-8507, Japan

CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

^{*}Contact: yamanaka@frontier.kyoto-u.ac.jp

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA

Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan

^{*}Correspondence: yamanaka@frontier.kyoto-u.ac.jp

Normal iPSC: human embryogenesis

Renewable, patient-specific disease model, e.g. LQTS, HCM, 22q11del

- phenotype-genotype
- drug screening
- mutation discovery?

Replacement Therapy

Why an iPS model of BTHS?

- Human loss of function model, useful for studies of disease mechanism and interindividual variation.
- Renewable, patient-specific model of TAZ mutation for preclinical testing of BTHS treatment strategies.
- Potential for high throughput drug screening to discover novel approaches to treatment.

iPSC Model of Barth Syndrome

- Generation and characterization of 2 iPSC lines, one from each of 2 patients with BTHS.
- Differentiation and purification of BTHS iPSC-derived cardiomyocytes (iCMs).
- Analysis of mitochondrial abnormalities in a neonatal rat ventricular cardiomyocyte model.
- 4. Analysis of mitochontrial abnormalities in BTHS iCMs.
- Treatments to reverse BTHS iCM mitochondrial abnormalities

iPSC Models of Barth Syndrome

BTHH iPSC Quality Control

ESC-like morphology in feeder free culture

Expression of pluripotency markers

BTHH iPSC Quality Control

Karyotype

46 XY

Teratoma Assay

iPSC Model of Barth Syndrome

- Generation and characterization of 2 iPSC lines, one from each of 2 patients with BTHS.
- Differentiation and purification of BTHS iPSC-derived cardiomyocytes (iCMs).
- Analysis of mitochondrial abnormalities in a neonatal rat ventricular cardiomyocyte model
- 4. Analysis of mitochontrial abnormalities in BTHS iCMs.
- 5. Treatments to reverse BTHS iCM mitochondrial abnormalities

MACS CM Purification

MACS CM Purification

MACS CM Purification

iCM Beating

Ctrl BTHH BTHC

iCM Beating

Ctrl BTHH BTHC

MACS iCM Purification

Matrigel
Diff to iCMs

MACS iCM Purification

Matrigel
Diff to iCMs

Enriched iCMs

TNNT2

MACS iCM Purification

Matrigel
Diff to iCMs

Enriched iCMs

Assay

CL deficiency in BTHS iCMs

Mass/charge

iPSC Model of Barth Syndrome

- Generation and characterization of 2 iPSC lines, one from each of 2 patients with BTHS.
- Differentiation and purification of BTHS iPSC-derived cardiomyocytes (iCMs).
- Analysis of mitochondrial abnormalities in a neonatal rat ventricular cardiomyocyte model
- 4. Analysis of mitochontrial abnormalities in BTHS iCMs.
- 5. Treatments to reverse BTHS iCM mitochondrial abnormalities

Seahorses Biosciences extracellular flux analyzer

Extracellular acidification rate (ECAR): glycolysis

Oxygen consumpation rate (OCR): oxidative respiration

Basal Resp

A. Oligomycin

Basal
Resp

ATP H⁺
Gen Leak

A. Oligomycin B. FCCP

NRVM TAZ Knockdown Model

Validation of Knockdown

NRVM TAZ Knockdown Model

NRVM TAZ shRNA adeno
Assay
3 days

Validation of CL Depletion

Mitochondrial morphology in NRVM TAZ Knockdown Model

CTRL

Mito Area/Cell
Area (%)%
Ctrl
CTrl
TAZkd

TAZ shRNA

NRVMTAZ Knockdown Model

NRVMTAZ Knockdown Model

Mitochondrial Phenotype

Mitochondrial function after TAZ depletion in NRVM

CL deficiency makes F0FI ATP synthase activity limiting

Incr transmemb gradient

Decr ATP

Stress

Reduced ETC activity

Decr Resp Reserve

Summary: NRVM TAZ kd model of BTHS

- I. Rapid TAZ and CL depletion indicate short half-life of both.
- Mitochondrial functional abnormalities occur prior to detectable morphological abnormalities.
- Primary effect of CL deficiency at baseline is limitation of F0/F1 ATP synthase activity.

iPSC Model of Barth Syndrome

- Generation and characterization of 2 iPSC lines, one from each of 2 patients with BTHS.
- Differentiation and purification of BTHS iPSC-derived cardiomyocytes (iCMs).
- 3. Analysis of mitochondrial abnormalities in a neonatal rat ventricular cardiomyocyte model
- 4. Analysis of mitochontrial abnormalities in BTHS iCMs.
- 5. Treatments to reverse BTHS iCM mitochondrial abnormalities

Analysis of BTHS iCM Mitochondrial Activity

Analysis of BTHS iCM Mitochondrial Activity

Higher basal OCR and decreased ATP content suggest decreased mitochondrial efficiency.

Is the phenotype due to TAZ mutation or to other genetic difference?

 Analysis of a neonatal rat ventricular CMTAZ knockdown model.

2. TAZ modRNA rescue of the BTHS iPSC phenotype

Efficient modRNA transfection into NRVMs

NRVM tx nGFP modRNA **Imaging**

TAZ overexpression did not cause substantial mitochondrial phenotype

Control iCMs

Results replicated in BTHC iCMs

Mirror abnormalities seen in NRVM knockdown model.

- Mirror abnormalities seen in NRVM knockdown model.
- modTAZ confirms BTHS iCM metabolic defects are due to TAZ deficiency rather than other genetic differences.

- Mirror abnormalities seen in NRVM knockdown model.
- modTAZ confirms BTHS iCM metabolic defects are due to TAZ deficiency rather than other genetic differences.
- Data further demonstrate that the BTHS iCM metabolic defects are rapidly reversible.

- Mirror abnormalities seen in NRVM knockdown model.
- modTAZ confirms BTHS iCM metabolic defects are due to TAZ deficiency rather than other genetic differences.
- Data further demonstrate that the BTHS iCM metabolic defects are rapidly reversible.
- Provides positive control for development of assays to screen for therapeutic compounds

- Mirror abnormalities seen in NRVM knockdown model.
- modTAZ confirms BTHS iCM metabolic defects are due to TAZ deficiency rather than other genetic differences.
- Data further demonstrate that the BTHS iCM metabolic defects are rapidly reversible.
- Provides positive control for development of assays to screen for therapeutic compounds
- TAZ modRNA overexpression in control iCMs did not cause measurable abnormalities >>> amenable to gene therapy.

iPSC Model of Barth Syndrome

- Generation and characterization of 2 iPSC lines, one from each of 2 patients with BTHS.
- Differentiation and purification of BTHS iPSC-derived cardiomyocytes (iCMs).
- 3. Analysis of mitochondrial abnormalities in a neonatal rat ventricular cardiomyocyte model
- 4. Analysis of mitochontrial abnormalities in BTHS iCMs.
- Treatments to reverse BTHS iCM mitochondrial abnormalities

Valianpour, J. Lipid Res., 2003: LA increased CL in BTHS fibroblasts

Valianpour, J. Lipid Res., 2003: LA increased CL in BTHS fibroblasts

Malhotra et al., PNAS, 2009: Bromoenol lactone increased CL in

BTHS lymphocytes

Rescue of BTHS mitochondrial abnormalities by linoleic acid

Summary: treatments to rescue BTHS iCM mitochondrial abnormalities

Summary: treatments to rescue BTHS iCM mitochondrial abnormalities

 Established a renewable, human cardiomyocyte model for analyzing proposed treatments of BTHS cardiomyopathy.

Summary: treatments to rescue BTHS iCM mitochondrial abnormalities

- Established a renewable, human cardiomyocyte model for analyzing proposed treatments of BTHS cardiomyopathy.
- Showed that linoleic acid and arginine + cysteine supplementation normalize mitochondrial function in BTHS iCMs.

BTHS skin fibro

BTHS skin fibro

BTHS iPSC

BTHS iPSC

Recruitment

Seeking additional patients with BTHS for generation of iPS cells.

- informed consent.
- ~2 mm skin punch biopsy, obtained with topical local anesthetic.

Distribution

- Both BTHH and BTHC low passage fibroblasts available from BSF biorepository -- need to address expansion and further distribution.
- Will soon distribute BTHH and BTHC iPCs lines via a stem cell repository, e.g. Wicell.

Acknowledgements

Pu Lab

Alexander von Gise Zhiqiang Lin Aibin He Pingzhu Zhou Gang Wang Bing Zhou Terence Prendiville Kai Li Qing Ma Yong Hu

Collaborators

Amy Roberts (CHB)
Richard Kelley (Hopkins)
Ken Chien (Harvard)
Chuck Murry (Seattle)
Wim Kulik (Amsterdam)
David Clapham (CHB)
Saumya Das (BIDMC)
Kit Parker (Harvard)

wpu@pulab.org