Barth Syndrome 6th International Scientific, Medical, and Family Conference June 29, 2012

Developmental Noncompaction Cardiomyopathy in a Mouse Model of Barth Syndrome

Colin K.L. Phoon, MPhil, MD

Division of Pediatric Cardiology

Mitochondria & heart development

- Mitochondrial disorders
- Mitochondrial disorders as a category suggest a role of mitochondrial functioning in myocardial & heart development.
- Barth syndrome

Cardiovascular Research (2010) **88**, 5–6 doi:10.1093/cvr/cvq259 EDITORIAL

Not just the powerhouse of the cell: emerging roles for mitochondria in the heart

Derek J. Hausenloy^{1*} and Marisol Ruiz-Meana²

Cardiolipin, the center of mitochondrial physiology

Tafazzin (taz) encodes for an acyltransferase involved in the maturation of the phospholipid cardiolipin

Mitochondrial functions:

- Bioenergetics
- Apoptosis
- Calcium homeostasis
- Cellular redox balance
- Biosynthetic pathways
- Transcriptional control, cellular proliferation pathways
- Heme synthesis reactions
- Immune responses

Claypool & Koehler, *TiBS* 2011

Barth syndrome: cardiolipin deficiency

X-linked (Xq28): mutations in the taz gene

Journal of the Neurological Sciences, 1983, 62: 327-355 Elsevier 327

AN X-LINKED MITOCHONDRIAL DISEASE AFFECTING CARDIAC MUSCLE, SKELETAL MUSCLE AND NEUTROPHIL LEUCOCYTES

P,G. BARTH^{1,2}, H.R. SCHOLTE³, J.A. BERDEN⁴, J.M. VAN DER KLEI-VAN MOORSEL¹, I.E.M. LUYT-HOUWEN³, E.TH. VAN 'T VEER-KORTHOF⁵, J.J. VAN DER HARTEN² and M.A. SOBOTKA-PLOJHAR¹

¹Department of Pediatrics, Divisions of Pediatric Neurology, Research Biochemistry and Pediatric Cardiology, and ²Institute of Pathology, Divisions of Neuropathology and Pediatric Pathology, Free University Hospital, Amsterdam; ³Department of Biochemistry I, Erasmus University, Rotterdam; ⁴B.C.P. Jansen Institute of Biochemistry, University of Amsterdam, Amsterdam; and ⁵Department of Pediatrics, Division of Pediatric Haematology, University Hospital, Leiden (The Netherlands)

(Received 1 November, 1982) (Revised, received 11 August, 1983) (Accepted 17 August, 1983)

SUMMARY

An X-linked recessive disease is reported in a large pedigree. The disease is characterised by a triad of dilated cardiomyopathy, neutropenia and skeletal

Fig. 44. Case V-12. Cardiac myofibres from left ventriele. Longitudinal section prepared for electron microscopy. The fibres have a relative lack of myofibrils, the expanded sarcoplasm is studded with microchondria.

Myocardial trabeculation & compaction

LV noncompaction in Barth syndrome Towbin & Bowles, 2001

Trabeculation & compaction in human embryonic hearts Lamers et al., 1995

Model for Barth syndrome?

U LANGONE MEDICAL CENTER

- Model organisms: yeast, Drosophila, zebrafish
- Traditional mouse knockout genetics: unsuccessful
- Proprietary shRNA knockdown strategy

Cardiac dysfunction in TAZKD embryos

Taz knockdown leads to prenatal lethality

Evidence for pre-/perinatal lethality

- Uninduced litters: expected Mendelian ratios at birth
- One litter imaged at E14.5:
 - ▶ 8 live+2 resorbed embryos at E14.5
 - ▶ 6 live pups born, all WT

STAGE	TOTAL	WT Alive	WT Dead	TAZKD Alive	TAZKD Dead
E12.5	14	7	1	3	3
E13.5	67	31	2	29	5
E14.5	28	18	1	3	6
Newborn	60	35	0	13	12

TAZKD mice exhibit noncompaction

E13.5 Embryos In Vivo	End- diastolic Area (biV) (mm ²)	Fractional Area Shortening	Dorsal Ao peak velocity (mm/s)	Isovolumic Relaxation Time (msec)
WT	1.969	42.1%	103	53
	± 0.057	±1.7	±8	±8
TAZKD	1.832	45.5%	78*	42
	± 0.072	±1.3	±8	±9

*p < 0.05

Newborn Mice (few hours old)	End-diastolic Area (LV only) (mm ²)	Fractional Area Shortening	LV diastolic wall thickness (mm)
WT	1.413	50.8% +1.4	0.26
		<u> </u>	±0.01
TAZKD	1.375	49.4%	0.26
	± 0.058	±1.1	± 0.01

*No significant differences in any indices of heart size or function

Cardiolipin biochemistry is altered

NYU LANGONE MEDICAL CENTER

Mitochondria are abnormal: E13.5

Mitochondria-myofibril alignment

Ong, Cardiovasc Res 2010

Newborn myocardium

Abnormal mitochondrial morphometrics

Cardiomyocytes: Less differentiated?

Developmental window of noncompaction

Induced at E10.5

Abnormal cellular proliferation

Figure 7. Phosphohistone-H3 (PHH3) immunofluorescence staining of representative E13.5 WT and TAZKD left ventricular sections. Left panels: PHH3, single-channel; right panels: PHH3 (green) merged with DAPI (blue) and troponin (red). Differential cardio-myocyte proliferation in trabecular and compact layers is evident.

Microarray data: E12.5 myocardium

DAVID GO Terms (Functional annotation clusters)	Enrichment Score	Up/Down
Metal ion binding, zinc finger	1.6-5.6	Up/Down
Steroid hormone, nuclear hormone receptor	3.5	Down
Synaptic transmission, neurotransmitter, neuron	2.7-3.5	Down
Protein dimerization, protein binding	2.7	Up
Apoptosis, programmed cell death	2.6	Up
DNA binding, transcription, regulation of RNA metabolic process	2.5	Down
Membrane glycoprotein	2.0	Down
Cell adhesion, cell-cell adhesion	2.0	Down
Cell morphogenesis, neuron morphogenesis	1.8	Down

Role of reactive oxygen species (ROS)?

STEM CELLS

EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS

Mitochondrial Function Controls Proliferation and Early Differentiation Potential of Embryonic Stem Cells

SUDIP MANDAL,^{a,b} ANNE G. LINDGREN,^{a,c} ANAND S. SRIVASTAVA,^a AMANDER T. CLARK,^{a,c,d} UTPAL BANERJEE^{a,c,d,e}

^aDepartment of Molecular, Cell and Developmental Biology, ^dMolecular Biology Institute, ^eDepartment of Biological Chemistry, ^eEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, USA, and ^bBiology Division, Indian Institute of Science Education and Research, Mohali, Chandigarh, India

Developmental Cell Article

The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation

Jennifer R. Hom,^{1,8} Rodrigo A. Quintanilla,^{2,8} David L. Hoffman,¹ Karen L. de Mesy Bentley,⁵ Jeffery D. Molkentin,⁶ Shey-Shing Sheu,^{3,7} and George A. Porter, Jr.^{1,3,4,*} ¹Department of Pediatrics Division of Cardiology ²Department of Pediatrics Division of Cardiology ³Department of Pharmacology and Physiology ⁴Aab Cardiovascular Research Institute ⁵Pathology & Laboratory Medicine and the Electron Microscope Research Core University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA ⁶Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center and Howard Hughes Medical Institute, Cincinnati, OH 45229, USA ⁷Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA ⁸These authors contributed equally to this work *Correspondence: george_porter@urmc.rochester.edu DOI 10.1016/j.devcel.2011.08.008

SUMMARY

Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find that closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differthat mitochondria are important to the development of the heart, as dysfunction of the mitochondrial electron transport chain (ETC) can cause heart malformation and embryonic death between E8.5 and E10.5, suggesting that mitochondrial function is essential to cardiac function and survival of the embryo (Ingraham et al., 2009; Larsson et al., 1998).

Mitochondria in the adult heart are well characterized and occupy over 30% of the cell volume. It is thought that complex

Increased ROS: BTHS, TAZKO cells

Figure 2. MitoSOXTM Red shows increased mitochondrial ROS in fibroblasts from Barth syndrome patients (BTHS, bottom) vs. controls (top). Cells were plated at comparable density.

Figure 3. **A**,**B**) Mouse embryoid-derived fibroblast-like cells in which *tafazzin* was knocked out showed a 2 to 3-fold increase in mitochondrial superoxide in TAZ cells over wildtype (WT). (ESC's courtesy of Dr. Zaza Khuchua; Acehan 2009)

ROS: E12.5 ventricular myocardium

Figure 4. DCF staining shows increased ROS in E12.5 ventricular cardiomyocytes from tafazzinknockdown (TAZKD, left) vs. wildtype (WT, right). Two representative regions of interest from each plate are shown. Cells were plated at comparable density.

ROS: E18.5 ventricular myocardium

Figure 5. MitoSOX[™] Red shows increased mitochondrial ROS in E18.5 *taz*-knockdown (TAZKD, left panels) ventricular cardiomyocytes vs. wildtype (WT, right panels). Cells were plated at comparable density.

N-acetylcysteine

Berk M. TiPS 2008

HT-NC phenotype in TAZKD newborn mice. **A)** Wildtype; **B)** TAZKD with HT-NC and ventricular septal defects. **C,D)** Newborns of pregnant mothers fed NAC: **(C)** Wildtype and **(D)** TAZKD. (**A** & **B** adapted from Phoon 2012)

Genes Associated with Human LV Noncompaction	Genes Related to Compact Zone & Trabecular Formation, & Cell Cycle Control, Animal Models	Transcriptional Regulators, Factors	PI3K/Akt Pathway- Related Genes
Lmx1b	R×ra (retinoid X receptor alpha)	Zinc finger proteins (many)	Akt-related: Akt2
Nr0b1	Jumonji-related: Jmjd6	GATA's: GATA6	Pleckstrin- related: Ph I db I
	BMP-related: BMPr1b	Klf14	lgf-related: lgfbp2, lgfals
	Neuregulin-related: Nrg2	Nkx family: Nkx2.2	NfkB-related: Nfkbie, Nfkb2
	MAPK-related: Map3k9, Map4k2	p53-related: Trp53rk,Trp53inp2; Ankrd11,MDM2, Timm50	Bcl2-related: Bad, Bnip2, Bmf, Hrk
	Notch-related: Dlk2	Sp2, Sp6	Eefla2
	E2f2	Cdk9	Rgs2
Table 1	Snn		Egfr

Conclusions

- ▶ The TAZKD mouse is a good model for human BTHS.
 - Ventricular hypertrabeculation-noncompaction
 - Myocardial wall thinning
 - Abnormal mitochondrial morphometrics
 - Abnormal mitochondrial functioning: ROS
- Tafazzin knockdown in embryonic vs. adult hearts indicates entirely different roles for mitochondria.
- Mitochondria & heart development: an emerging field
 - Myocardial patterning: possible role of mito-ROS
 - Not just bioenergetics!

Future directions

- How does cardiolipin contribute to mitochondrial development & normal cardiac myoarchitecture?
 - Cell cycling pathways
 - ▶ ROS, Ca²⁺ homeostasis, ECM, cell adhesion, cytoskeleton

Acknowledgments

<u>Phoon Lab</u> Nitya Viswanathan, MD

<u>Ren Lab</u> Mindong Ren, PhD Irit Edelman-Novemsky, PhD Dawen Yu, PhD Jinping Ma, PhD <u>Schlame Lab</u> Michael Schlame, MD Yang Xu, PhD

<u>Stokes Lab</u> David Stokes, PhD Devrim Acehan, PhD

OCS Genome Technology Center & <u>NYU Cancer Institute Genomics Facility</u> Jiri Zavadil, PhD

<u>Grant support</u> The Barth Syndrome Foundation NIH NIH: Shared Instrumentation Grant & NYU Cancer Institute Center Support Grant CTSI/CTSA, NYU

